Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells.

نویسندگان

  • Chapla Agarwal
  • Alpna Tyagi
  • Rajesh Agarwal
چکیده

We recently reported that gallic acid is a major active agent responsible for grape seed extract activity in DU145 human prostate carcinoma cells. The present study was conducted to examine its efficacy and associated mechanism. Gallic acid treatment of DU145 cells resulted in a strong cell growth inhibition, cell cycle arrest, and apoptotic death in a dose- and time-dependent manner, together with a decrease in cyclin-dependent kinases and cyclins but strong induction in Cip1/p21. Additional mechanistic studies showed that gallic acid induces an early Tyr(15) phosphorylation of cell division cycle 2 (cdc2). Further upstream, gallic acid also induced phosphorylation of both cdc25A and cdc25C via ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) activation as a DNA damage response evidenced by increased phospho-histone 2AX (H2A.X) that is phosphorylated by ATM in response to DNA damage. Time kinetics of ATM phosphorylation, together with those of H2A.X and Chk2, was in accordance with an inactivating phosphorylation of cdc25A and cdc25C phosphatases and cdc2 kinase, suggesting that gallic acid increases cdc25A/C-cdc2 phosphorylation and thereby inactivation via ATM-Chk2 pathway following DNA damage that induces cell cycle arrest. Caffeine, an ATM/ataxia telangiectasia-rad3-related inhibitor, reversed gallic acid-caused ATM and H2A.X phosphorylation and cell cycle arrest, supporting the role of ATM pathway in gallic acid-induced cell cycle arrest. Additionally, gallic acid caused caspase-9, caspase-3, and poly(ADP)ribose polymerase cleavage, but pan-caspase inhibitor did not reverse apoptosis, suggesting an additional caspase-independent apoptotic mechanism. Together, this is the first report identifying gallic acid efficacy and associated mechanisms in an advanced and androgen-independent human prostate carcinoma DU145 cells, suggesting future in vivo efficacy studies with this agent in preclinical prostate cancer models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation.

Jaceosidin, a flavonoid derived from Artemisia princeps (Japanese mugwort), has been shown to inhibit the growth of several human cancer cells, However, the exact mechanism for the cytotoxic effect of jaceosidin is not completely understood. In this study, we investigated the molecular mechanism involved in the antiproliferative effect of jaceosidin in human endometrial cancer cells. We demonst...

متن کامل

ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres.

Shelterin component TRF2 prevents ATM activation, while POT1 represses ATR signalling at telomeres. Here, we investigate the mechanism of G2/M arrest triggered by telomeres uncapped through TRF2 or POT1 inhibition in human cells. We find that telomere damage-activated ATR and ATM phosphorylate p53, as well as CHK1 and CHK2, thus activating two independent pathways to prevent progression into mi...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells.

Prostate cancer, the most frequently diagnosed malignancy in elderly males of the United States, has become a major health issue in Asia. Previous studies have demonstrated that leaf extracts of Toona sinensis Roem. contain cytotoxic activity on several cancer cells including prostate cancer cells. In this study, gallic acid is identified as the major anti-cancer compound in T. sinensis leaf ex...

متن کامل

Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells

Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2006